Trajectory Generation and Control of Autonomous Vehicles

  • Thibaud Poulain National Institute of Applied Sciences of Lyon, France
Keywords: Path planning, path tracking, nonlinear systems

Abstract

The objective of this paper is to find feasible path planning algorithms for non-holonomic vehicles subject to their real dynamical constraints. Symmetric polynomial trajectory generation is proposed as reference. Then a trajectory tracking controller for a nonlinear vehicle model is developed, linearizing and discretizing the model, using a linear-quadratic regulator (LQR) control algorithm. Results of numerical simulations are shown. At the end, other controllers are presented in order to continue this work and compare their performances.

References

[1] Aymar Tissèdre. Voiture Autonome [Online]. Voiture Autonome, 2015, 2018, [6/12/2018] Availaible:https://www.voiture-autonome.net/
[2] Vu Trieu Minh and John Pumwa, “Feasible Path Planning for Autonomous Vehicles,” Mathematical Problems in Engineering, vol. 2014, Article ID 317494, 12 pages, 2014.
[3] Vu Trieu Minh. (2016). Nonlinear Model Predictive Controller and Feasible Path Planning for Autonomous Robots. Open Computer Science., 2016, DOI: https://doi.org/10.1515/comp-2016-0015
[4] Mathworks. (2018). Global Optimization Toolbox: User's Guide (r2018a). from https://fr.mathworks.com/help/control/ref/dlqr.html
[5] K. Abidi and J.-X. Xu, Advanced Discrete-Time Control, Studies in Systems, Decision and Control Chapter 2, p9-61 (2015), DOI 10.1007/978-981-287-478-8_2
[6] Andrey Polyakov, Denis Efimov, Wilfrid Perruquetti. Sliding Mode Control Design for MIMO Systems: Implicit Lyapunov Function Approach. European Control Conference, Jun 2014, Strasbourg, France,. 2014.
[7] Krokidis, P.I & Dounis, Anastasios & Syrkos, George & Tseles, Dimitris. Robust sliding mode control applied to nonlinear systems for tracking and regulation in terms of uncertainty. 2005.
[8] Benamor, A., Chrifi-Alaoui, L., Ouriagli, M., Chaabane, M., Massaoud, H. : “Lyapunov Based Second Order Sliding Mode Control for MIMO Nonlinear Systems ”, Proc. International Journal on Sciences and Techniques of Automatic control, IJ-STA, 5(1), 1486-1499, 2011
[9] M. R. Amini, M. Shahbakhti, S. Pan and J. K. Hedrick, "Discrete adaptive second order sliding mode controller design with application to automotive control systems with model uncertainties," 2017 American Control Conference (ACC), Seattle, WA, 2017, pp.4766-4771.doi: 10.23919/ACC.2017.7963692
[10] Vu Trieu Minh et al, Development of a Wireless Sensor Network Combining MATLAB and Embedded Microcontrollers, Sensor Letter, 13(12), 1091-1096, 2015
[11] R. Moezzi, V. T. Minh, and M. Tamre, “Fuzzy Logic Control for a Ball and Beam System”, Int. J. Innov. Technol. Interdisc. Sci., vol. 1, no. 1, pp. 39-48, 2018
[12] D. Calzolari, B. Schürmann and M. Althoff, "Comparison of trajectory tracking controllers for autonomous vehicles," 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, 2017, pp. 1-8. doi: 10.1109/ITSC.2017.8317800.
Published
2019-01-18
How to Cite
[1]
T. Poulain, “Trajectory Generation and Control of Autonomous Vehicles”, Int. J. Innov. Technol. Interdisc. Sci., vol. 2, no. 1, pp. 200-211, Jan. 2019.